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Abstract. Spectroscopic diagnosis of the temperature and den-
sity structure of hot optically thin plasmas from emission line
intensities is usually described in two ways. The simplest ap-
proach, the ‘line ratio’ method, uses an observed ratio of emis-
sion line intensities to determine a ‘spectroscopic mean’ value of
electron temperature〈Te〉 or electron density〈ne〉. The mean
value is chosen to be the theoretical value ofTe or ne which
matches the observed value. The line ratio method is stable, lead-
ing to well defined values of〈Te〉 or 〈ne〉 for each line pair but,
in the realistic case of inhomogeneous plasmas, these are hard
to interpret since each line pair yields different mean param-
eter values. The more general ‘differential emission measure’
(DEM ) method recognizes that observed plasmas are better
described by distributions of temperature or density along the
line of sight, and poses the problem in inverse form. It is well
known that theDEM function is the solution to the inverse
problem, which is a function ofTe, ne, or both. Derivation of
DEM functions, while more generally applicable, is unstable to
noise and errors in spectral and atomic data. The mathematical
relation between these two approaches has never been precisely
defined. In this paper we demonstrate the formal equivalence
of the approaches, and discuss some potentially important ap-
plications of methods based upon combining the line ratio and
DEM approaches.
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1. Introduction and motivation

Knowledge of the densities and temperatures of space plasmas
is essential if we are to understand their most basic structure.
Without this knowledge, almost nothing can be said regarding
the generation and transport of mass, momentum and energy.
Thus, since early in the era of space-borne spectroscopy we
have faced the task of inferring plasma electron densities,ne,
and temperatures,Te, for hot solar and other astrophysical plas-
mas from optically thin emission line spectra (e.g. Gabriel &
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Jordan 1969; Munro et al. 1971; Gabriel & Jordan 1971; Dere
& Mason 1981; Doschek 1987; Mason et al. 1994).

A fundamental property of hot solar plasmas is their basic
inhomogeneity. This is obvious from direct images of the Sun’s
corona and transition region which show a wealth of fine scale
structure down to the observable limits of resolution (e.g., Golub
& Pasachoff 1997). It is confirmed by less direct spectroscopic
work which reveals differing values ofne, Te for different line
ratios (see e.g. discussions by Doschek 1984, 1987). Strong
inhomogeneity is expected also from physical considerations (a
particularly interesting perspective, addressing why the plasmas
do not appear to be even more inhomogeneous than already
observed, is given by Litwin & Rosner 1993).

The emergent intensities of spectral lines from optically
thin plasmas are determined by integrals along the line of sight
through plasma parameters (that depend mostly on temperature
and density) through the plasma. There are two common ap-
proaches to inferring plasma properties from observed spectral
line intensities. Consider the case in which the temperature of
the plasma is desired. The simplest approach, the ‘line ratio’ or
‘spectroscopic mean’ method, involves finding the single value
of the electron temperature from a theoretical calculation of the
ratio of carefully selected emission lines, that is in agreement
with the observed ratio. A spectroscopic mean value of the tem-
perature is derived for each line pair. If the plasma were truly
isothermal, then the derived spectroscopic mean values for all
line pairs would coincide with the actual plasma temperature,
to within observational and theoretical errors. This approach
was applied as early as 1941 to planetary nebulae by Menzel
et al. (1941), and is reviewed by Gabriel & Jordan (1969) and
Mason & Monsignori-Fossi (1994). The other method is to re-
cast the above mentioned line integrals into suitable form for
‘inversion’, in which one solves for a function,ξ(Te), which
is a source term that describes the distribution of material as a
function of temperature along the line of sight.ξ(Te) is called
the ‘Differential Emission Measure’ (DEM ) Function1. This
gives a general characterisation of the distribution of the plasma
with respect to temperature.

1 Misconceptions as to its definition persist in the literature, for ex-
ample Tandberg-Hanssen (1995), pg. 177.
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The integral equation formalism for temperature sensitive
lines was first discussed by Pottasch (1964) and put on a rig-
orous mathematical basis for arbitrary geometry by Craig &
Brown (1976). The formulation was later extended to aDEM
functionζ(ne) differential inne for isothermal plasmas (Alm-
leaky et al. 1989, and references therein). The concept was
also generalised to the bivariate case ofµ(ne, Te) by Jefferies
et al. (1972a,1972b) although their definition contained an error
corrected in the independent formulation by Brown et al. (1991).
Formulation of how this general bivariate case could be cast as
an inverse problem and in principle solved eluded these earlier
authors and was finally established by Hubeny & Judge (1995)
and elaborated by Judge et al. (1997).

Although more general than the line ratio method, it is well
known that theDEM formulation is prone to errors in the so-
lution arising from the ill-posed nature of the inverse operator -
i.e. instability of the solution to errors in the spectral and atomic
data (Craig & Brown 1976; Judge et al. 1997). This is intrinsic to
the nature of the inverse problem, in which a continuous distri-
bution function (or discretization thereof) is sought from a finite
number of data points. Furthermore, there is significant linear
dependence between the ‘kernels’ in the integral equations (see
Sects. 3 , 4 and 5).There is thus no single mathematical solu-
tion to the DEM problem, and the intrinsic ill-posedness must be
addressed from the outset, essentially by smoothing the desired
DEM function so that, in a loose sense, the number of indepen-
dentDEM values does not exceed the number of measurements
(e.g. Craig & Brown 1986). There are, as well as these funda-
mental limitations of theDEM method, practical problems
concerning the nature and magnitude of errors in the theoreti-
cal calculation of the intensities of emission lines. For example,
Judge et al. (1995) showed that theξ(Te) problem also has large
sources of systematic error in excess of known errors in line in-
tensities, which they suggested are due to the breakdown of the
fundamental assumption of ionisation equilibrium made in for-
mulating the problem. In addition Judge et al. (1997) concluded
that systematic errors in the atomic physics, and in the ionisa-
tion balance, make straightforward inversion forµ(ne, Te) very
difficult or intractable.

The ‘mean value’ or ‘line ratio’ approach on the other hand
gives well defined results which are appealing because they are
simple to derive, and they can remove, through careful choice
of lines, large sources of uncertainty arising from errors in ion-
ization balance. However, they have the serious drawback that
the results are not easy to interpret for inhomogeneous plasmas,
different line ratios for example giving different mean densities
even for lines peaking in the same temperature range because of
their different detailed sampling of the temperature distribution
(cf. Almleaky et al. 1989 and Brown et al. 1991).

The exact relationship between the two approaches has
never been explored in depth, although particular situations were
discussed by Brown et al. (1991). Motivated by this, by the ad-
vent of new data from the CDS and SUMER instruments on the
SOHO spacecraft, and by the desire to remove the large sources
of systematic error that plague inversions of emission line data
(e.g., Judge et al. 1995; Judge et al. 1997), we study the relation-

ship between these two methods. We show that there is a precise
correspondence betweenDEM functions and a suitable com-
plete set of mean spectroscopic densities and/or temperatures in
situations where these can be defined. We suggest methods that
should improve the stability of inversions forξ(Te), ζ(ne) and
µ(ne, Te), by using hybrid schemes. Such schemes combine
line ratio techniques with theDEM formulation to minimize
systematic errors that can arise from inaccurate or invalid ioni-
sation balance calculations.

2. Mathematical issues and background

The total powerPi radiated by a particular spectral line labelled
i, from an optically thin plasma occupying a volumeV is:

Pi =
∫ ∫ ∫

V

hνiAinu(i)dV erg s−1 (1)

whereh is Planck’s constant,νi is the frequency of the line,Ai

(s−1) is the Einstein A-coefficient, andnu(i) (cm−3) is the popu-
lation density of the upper levelu(i). Following standard prac-
tice, we define a line emission coefficient,Ki(ne(r), Te(r)),
normalised to the electron density squared as

Ki(ne(r), Te(r)) =
hνi

4π

nu(i)Ai

n2
e

erg cm3 sr−1 s−1, (2)

then Eq. (1) becomes:

Pi = 4π

∫
V

Ki(ne(r), Te(r))n2
e(r) d3r erg s−1. (3)

By writing the equations in this form, we note that sev-
eral implicit assumptions have been made (see, e.g., Judge
et al. 1997 for details), including that of ionisation equilibrium.
Ki(ne(r), Te(r)) is almost independent of densityne for col-
lisionally excited permitted transitions decaying to the ground
state of a given ion. This equation, with full dependence on
ne andTe included in the emission coefficient, was studied by
Jefferies et al. (1972a,1972b), by formulating the integrand in
terms of a function of electron density and temperature. This
function was later identified (see Brown et al. 1991) as the bi-
variateDEM funtion ofne andTe, namelyµ(ne, Te). Follow-
ing the derivation of Brown et al. (1991) we make the following
change of integration variable in Eq. (3):

d3r =
dnedTe

|∇ne| |∇Te| sinθne,Te

dLne,Te
cm3 (4)

Hence, transforming the volume integral of Eq. (1) to a path
integral of the emissivity along a path of constantne, Te. Here
θne,Te

(assumed to be non-zero) is the local angle between vec-
tors ∇ne and ∇Te normal to surfacesSne , STe of constant
electron density and temperature respectively. The reader is re-
ferred to Fig. 1 in Brown et al. (1991) for a perspective of the
geometry of the system and a discussion of the degenerate case
θne,Te

= 0. So for every spectral linei we have

Pi = 4π

∫
Te

∫
ne

Ki(ne, Te)M(ne, Te) dnedTe erg s−1 (5)
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where, from Brown et al. (1991),M(ne, Te) (cm−3) is defined
as

M(ne, Te) =
∮

Lne,Te

n2
e

|∇ne| |∇Te| sinθne,Te

dLne,Te (6)

Usually, one does not directly observe the total radi-
ated powerPi, but the intensity (erg cm−2 st−1 s−1), Ii =
Pi/(4πS), whereS is the area of the projected volumeV . Defin-
ing µ = M/S, which has units of cm−5, we find

Ii =
∫

Te

∫
ne

Ki(ne, Te)µ(ne, Te) dnedTe (7)

We are now in a position to define the differential emission mea-
sure inne, ζ(ne), as the reciprocal density-gradient-weighted
mean square electron density and, correspondingly the differen-
tial emission measure inTe,ξ(Te) as the reciprocal temperature-
gradient-weighted mean square electron density, obtained from
Eq. (6) as follows:

ζ(ne) =
∫

Te

µ(ne, Te)dTe (8)

ξ(Te) =
∫

ne

µ(ne, Te)dne (9)

Thus, in terms of physical interpretation of a set of frequency
integrated line intensitiesIi alone, the differential emission mea-
sures inne andTe must form the spectroscopic basis for further
interpretation of the raw data, such as determining the energy
balance or determining whether the data are compatible with
an atmosphere at constant pressure (see Craig & Brown 1976;
Judge et al. 1997). Formulation of the relationship between these
functions and the ‘mean’ observed quantities is therefore of ben-
efit to the solar physics community.

3. Relationship betweenξ(Te) and 〈Te〉
Consider a linei for whichKi(ne, Te) is a weak function of den-
sity, such as a resonance line.Ki(ne, Te) can then be replaced
by Ki(Te). In this case we have the spectral line intensity

Ii =
∫

Te

ξ(Te)Ki(Te)dTe . (10)

For two such linesi, j, the ratio of the two line intensities is

Rij =
Ii

Ij
=

∫
Te

ξ(Te) Ki(Te) dTe∫
Te

ξ(Te) Kj(Te) dTe
, (11)

and if the emission coefficients are different, then the ratio de-
pends onTe. If the plasma is homogeneous in temperature, i.e.
isothermal, we could express theDEM = ξ(Te) function as
ξ(Te) = ξ0 δ(Te − 〈Te〉) such that, on substituting this expres-
sion into to Eq. (11) and integrating over the whole temperature
domain, we have

Rij =
ξ0 Ki(〈Te〉)
ξ0 Kj(〈Te〉) (12)

and on dividing throughout byξ0 we may expressRij in terms of
the ‘mean’ spectroscopic temperature,〈Te〉ij , for the particular
line pair(i, j), i.e.

Rij =
Ki(〈Te〉)
Kj(〈Te〉) = Sij(〈Te〉ij) (13)

whereSij(Te) = Ki(Te)
Kj(Te) is assumed to be a monotonic, bi-

jective (invertible) function which has a unique inverse on the
temperature domain considered when we restrict our study to
resonance lines, i.e. differentTe andnodependence onne, only.
For these conditions the relationship is almost always satisfied.
Therefore, on inspection, the relation between〈Te〉ij and the
observed line ratiosRij is given by

〈Te〉ij = S−1
ij (Rij) (14)

To formulate an expression forξ(Te) in terms of the ‘mean’
spectroscopic temperatures we must return to Eq. (10). On di-
viding through Eq. (10) by any other line intensityIobs

j(i), (i /= j),
known to depend differently onTe from line i (hence the nota-
tion j(i)), we obtain

R∗
i,j(i) =

Ii

Iobs
j(i)

=
∫

Te

ξ(Te) K ′
i(Te) dTe (15)

with K ′
i(Te) = Ki(Te)

Iobs
j(i)

. This expression thus gives the ratio

of the theoreticalintensity for linei to theobservedintensity
of line j(i). At this stageIi, and henceR∗

i,j(i), are not known
quantities. If we setR∗

i,j(i) = Ri,j , the observed line ratio,
then Eq. (15) becomes an integral equation with known LHS,
and known kernelK ′

i(Te), in whichξ(Te) is the quantity to be
determined. Consider formingn ratios of the intensities of a set
of emission lines to form a vectorR:

R = (R1,j(1), R2,j(2), ..., Rn,j(n)) (16)

If we discretize Eq. (15) with respect toTe, then the equation
becomes a matrix equation of the form:

R = K ′ ξ. (17)

The rows ofK ′ are simply rows of kernels of Eq. (10) divided
by observed line intensities. This has the (poorly conditioned,
see Craig & Brown 1986) analytical solution:

ξ = K ′−1
R. (18)

This equation forn ratios permitsξ to be determined at up ton
discrete temperatures. The above illustrates that the equations
for line ratios can be simply re-written in a standard form, which
can thus be used in numerical algorithms and will be discussed
below. But we have not yet written the formal equivalence be-
tween theξ(Te) functions and a set of line ratios, and their cor-
responding mean derived temperatures. From the above, this is
clearly just

ξ = K ′−1{Sij(〈Te〉ij)}, (19)

where{Sij(〈Te〉ij)} denotes the array of line ratios indexed by
i. This expression relates the DEM to the set of spectroscopically
derived temperatures through the inverse of the matrixK ′.
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4. Relationship betweenζ(ne) and 〈ne〉
Here we use an approach analogous to that of Almleaky
et al. (1989). Consider an optically thin plasma that is isother-
mal withTe = T0. The total emission of a line labelledi, given
by Eq. (7) and Eq. (8) is

Ii =
∫

ne

ζ(ne) Ki(ne) dne, (20)

sinceKi(ne) = Ki(ne, Te = T0). Since the plasma has no
uniquene, we can nevertheless define a spectroscopic ‘mean’
electron density for the any ratio of lines displaying some degree
of density sensitivity, for instance using a resonance line and an
intersystem line from a common ionisation stage of a particular
ion. For this pair(i, j), we seek the electron density of a ho-
mogeneous plasma that would yield the same line ratio,Rij , as
the inhomogeneous plasma under observation. To achieve this
we defineζ(ne) = ζ0 δ(ne − 〈ne〉) , where〈ne〉 is the ‘mean’
spectroscopic electron density as defined earlier.

By direct analogy to the steps producing Eqs. (11) through
(19) we can construct a relationship for the discretized differen-
tial emission measure inne, ζ, in terms of a set of ‘mean’ spec-

troscopic densities〈ne〉ij , and the operatorHij(ne) = Ki(ne)
Kj(ne) .

For purposes of writing expressions formally equivalent to those
above, this operator must now beassumedto be unique (mono-
tonic, bijective). Thus,

ζ = K ′−1{H−1
ij (〈ne〉ij)}, (21)

whereK ′−1
is to be understood as the equivalent (but clearly

not identical) matrix to that in Eq. (19). While this expression
assumes that the inverse operatorH−1

ij (〈ne〉ij) has a unique
solution, notice that a numerical solution forζ, analogous to
Eq. (18), makes no such assumption. In fact, it removes am-
biguities that can arise from the non-unique inverse operator
H−1

ij (〈ne〉ij) for certain line ratios in important ions. This is
because, in a numerical implementation, this operation is not
performed. The vector element is instead set to the observed ra-
tio Ri,j(i). An example of non-unique inverse operators occurs
for certain ratios of intersystem lines in the boron isoelectronic
sequence (e.g., see Brage et al. 1996, Fig. 2).

5. Relationship betweenµ(ne, Te) and 〈ne〉, 〈Te〉 pairs

In the general case we wish to obtain information about the form
of the bivariate differential emission measure,µ(ne, Te) from a
set of ‘mean’ spectroscopic densities,〈ne〉, and temperatures,
〈Te〉, discussed above. These ‘mean’ values are usually derived
individually, as described earlier, by looking at line pairs that
are mostly sensitive toTe, or ne, but not both.

Following the method of the previous sections, we seek
mean parameters〈ne〉 and〈Te〉 of the homogeneous plasma that
will yield the same line ratio as the observed inhomogeneous
plasma. Some care must be taken here, as can be seen by, follow-
ing earlier sections, assuming that the bivariateDEM function
can be approximated byµ(ne, Te) = µ0δ(Te − 〈Te〉)δ(ne −

〈ne〉). Using Eq. (7) to form the line ratio of two lines with
labelsi andj, (i /= j):

Rij =
Ii

Ij
=

∫
Te

∫
ne

Ki(ne, Te)µ(ne, Te) dnedTe∫
Te

∫
ne

Kj(ne, Te)µ(ne, Te) dnedTe
(22)

On substitution ofµ(ne, Te) given above into Eq. (22) and per-
forming the double integral we obtain

Rij =
Ki(〈ne〉, 〈Te〉)
Kj(〈ne〉, 〈Te〉) = Mij(〈ne〉, 〈Te〉) (23)

To try to determine〈ne〉 and〈Te〉 does not make sense, since
there is just one equation, but two unknowns,〈ne〉 and 〈Te〉.
Thus it is clear that another equation is needed. One possible
solution is to assume that〈Te〉 = T 0

ij whereT 0
ij is the coronal

ionisation equilibrium temperature for the particular ion(s) un-
der study. This is in fact a common assumption made for solar
corona lines (e.g., Mason 1991). If this assumption (or some-
thing else) is made, then for a set of emission lines of temperature
and density sensitivity, we see that the pair(〈ne〉, 〈Te〉) can be
determined provided there exists an inverse functionM−1

ij , i.e.

(〈ne〉ij , T
0
ij) = M−1

ij (Rij) (24)

Repeating the steps taken to formulate Eq. (15) we divide
through Eq. (7) by another line intensity,Ij(i), again displaying
the required functional (either density sensitive or temperature
sensitive) behaviour to produce:

Ri,j(i) =
Ii

Ij(i)
=

∫
Te

∫
ne

K ′
i(ne, Te)µ(ne, Te) dnedTe (25)

discretizing this with respect tone andTe we have the following

Ri,j(i) =
m∑

l=1

p∑
q=1

µ(nq, Tl) K ′
i(nq, Tl) ∆ne ∆Te (26)

Performing an operation described in Hubeny & Judge (1995)
we re-index froml = 1, . . . , m and q = 1, . . . , p to κ =
1, . . . , mp so that Eq. (26) may be recast in a standard ma-
trix form, where the∆ne, ∆Te terms are combined to form a
measure of the redimensioned space, namely∆(Ne

⊗
Te) and

absorbed into the redimensioned form ofK ′(ne, Te). Therefore
Eq. (26) becomes:

Ri,j(i) =
mn∑
κ=1

Uκ K ′
iκ (27)

Where Uis the 1 dimensional transform of the 2 dimensional
function µ. This has an analytical solution of the form (c.f.
Eqs. (19) and (21))

U = K ′−1{M−1
ij (〈ne〉ij , T

0
ij)}. (28)

AgainK ′−1
is equivalent, but not equal to that of Eq. (19). Also,

the comments above on the uniqueness of inverse operators in
theζ problem apply equally to the bivariate problem.
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6. Applications

The above formalism suggests new ways in which line ratio and
DEM methods may be utilized together in an optimal fashion.
Consider Eq. (11), and for illustration let us restrict our discus-
sion to the temperature dependent problem only for a plasma
close to coronal ionisation equilibrium. To illustrate the issue,
let us split each kernel into the following factors:

Ki =
hνi

4π
·Ai ·

nu(i)

nionne
· nion

nel
· nel

nH
· nH

ne
erg cm3 sr−1 s−1,(29)

where
nu(i)

nion
, is the population density of the upper atomic level

of the line divided by that of the ion to which it belongs (the
subscription is a label for the ion charge, including the neu-
tral case),nion

nel
, the ionic abundance,nel

nH
, the elemental abun-

dance relative to hydrogen and,nH

ne
, the relative abundance of

H to electrons respectively. As discussed at length by Judge
et al. (1997), errors in the calculation of the number densities
nu(i) (or, equivalently, the emission coefficientsKi) can, for
this case, be split into two components. First, relatively small
errors (≤ 10%) arise in the cross sections for bound-bound pro-
cesses that affect the factor

nu(i)

nionne
in Eq. (29). Second, much

larger, more systematic errors arise from errors in treatment
of bound-free processes affecting the ionisation balance factor
nion

nel
in Eq. (29). This immediately suggests that, when trying

to solveDEM problems, line pairsi, j can be chosen only to
include those of the same ionisation stage. This is of course
standard practice for application of the line ratio approach. The
proposed algorithm would thus be based upon minimization
of the squared difference between observed and computed line
ratios, instead of the more standard solution that would mini-
mize the squared difference between observed and computed
line intensities. This would remove (to zeroth order) most of
the major sources of uncertainty that render the latter approach
intractable (e.g., Judge et al. 1997). Some promising initial re-
sults have been obtained using such a scheme. Details will be
presented elsewhere (McIntosh 1998).

7. Summary

We have shown that for an optically thin plasma, there is indeed
a unique mathematical relationship between the ‘mean’ spectro-
scopic quantities〈ne〉, 〈Te〉 and the differential emission mea-
sure functions (ξ(Te), ζ(ne), andµ(ne, Te)). These relation-
ships are true provided certain assumptions hold regarding the
nature of the emitting plasma, and the characteristic behaviour
of particular line ratios, and show the equivalence between the
full inversion and mean value methods.

For an optically thin, homogeneous, plasma and given a
set of observed resonance line intensities, we have derived an
expression that relates the ‘mean’ spectroscopic temperatures
{〈Te〉} and the discretized differential emission measure in tem-
peratureξ (see Eq. (19)). Following a similar method we have
obtained, for an isothermal plasma, an expression relating the
‘mean’ spectroscopic densities{〈ne〉} and the discretized dif-
ferential emission measure in electron density,ζ, which is given

in Eq. (21). In the treatment of the general bivariateDEM func-
tion µ(ne, Te), Sect. 4 shows that we can obtain a representa-
tion of µ(ne, Te) when the conditions for Sects. 2 and 3 occur
simultaneously (i.e.situations where ‘mean’ densities and tem-
peratures are actually defined). Essentially this means that for
a large enough set of observed lines with different temperature
and density characteristics, a relationship of the form of Eq. (28)
will hold for the particular set of inferred ‘mean’{〈Te〉, 〈ne〉}
pairs.

Finally, we pointed out some potentially important appli-
cations of inversion schemes based upon minimizing differ-
ences between observed and computedratios, instead of the
more usualintensities. These offer the possibility of removing
large, systematic errors that may arise from uncertain ionization
balance, as have been suggested to explain solar data (Judge
et al. 1995), and have been demonstrated to be the dominant
source of error in standard inversions of line intensities (Judge
et al. 1997).
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